Affordable Access

Simulation of Surface EMG Signals for a Multi-layer Volume Conductor with Triangular Model of the Muscle Tissue

Publication Date
  • Mathematics
  • Medicine


 IEEE Transactions on Biomedical Engineering Copyright (c) 2006 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to [email protected] 1  Abstract—This study analytically describes surface electromyogram (sEMG) signals generated by a model of a triangular muscle, i.e., a muscle with fibres arranged in a fan shape. Examples of triangular muscles in the human body are the deltoid, the pectoralis major, the trapezius, the adductor pollicis. A model of triangular muscle is proposed. It is a sector of a cylindrical volume conductor (with the fibres directed along the radial coordinate) bounded at the muscle/fat interface. The muscle conductivity tensor reflects the fan anisotropy. Edge effects have been neglected. A solution of the non space invariant problem for a triangular muscle is provided in the Fourier domain. An approximate analytical solution for a two plane layer volume conductor model is obtained by introducing a homogeneous layer (modelling the fat) over the triangular muscle. The results are implemented in a complete sEMG generation model (including the finite length of the fibres), simulating single fibre action potentials. The model is not space invariant due to the changes of the volume conductor along the direction of action potential propagation. Thus the detected potentials at the skin surface change shape as they propagate. This determines problems in the extraction and interpretation of parameters. As a representative example of application of the simulation model, the influence of the inhomogeneity of the volume conductor in CV estimation is addressed (for two channels; maximum likelihood and reference point methods). Different fibre depths, electrode placements and small misalignments of the detection system with respect to the fibre have been simulated

There are no comments yet on this publication. Be the first to share your thoughts.