Affordable Access

Approximate Method for Studying the Waves Propagating along the Interface between Air-Water

Authors
Publisher
Mathematical Problems in Engineering
Publication Date

Abstract

This paper is devoted to consider the approximate solutions of the nonlinear water wave problem for a fluid layer of finite depth in the presence of gravity. The method of multiple-scale expansion is employed to obtain the Korteweg-de Vries (KdV) equations for solitons, which describes the behavior of the system for free surface between air and water in a nonlinear approach. The solutions of the water wave problem split up into two wave packets, one moving to the right and one to the left, where each of these wave packets evolves independently as the solutions of KdV equations. The solution of KdV equations is obtained analytically by using a reliable modification of Laplace decomposition method (LDM), namely, the modified Laplace decomposition method (MLDM) is presented. This procedure is a powerful tool for solving large amount of nonlinear problems. The proposed method provides the solution as a series which may converge to the exact solution of the problem. Also, the convergence analysis of the proposed method is given. Finally, we observe that the elevation of the water waves is in form of traveling solitary waves. The horizontal and vertical of the velocity components have nonlinear characters.

There are no comments yet on this publication. Be the first to share your thoughts.