Affordable Access

Publisher Website

Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa

Journal of Proteomics
DOI: 10.1016/j.jprot.2014.07.007
  • Seminal Plasma
  • Spermatozoa
  • Zinc Alpha Glycoprotein
  • Preservation
  • Proteome
  • Spectral Counting
  • Agricultural Science
  • Biology


Abstract Seminal plasma is composed of secretions from the epididymis and the accessory sex glands and plays a critical role in the fertilising ability of spermatozoa. In rams, analysis of seminal plasma by GeLC–MS/MS has allowed the identification of more than 700 proteins, including a high abundance of Binder of Sperm family proteins (BSP1, BSP5, SPADH1, SPADH2), the spermadhesin family (bodhesin2), lactoferrin and newly identified proteins like UPF0762 (C6orf58 gene). When spermatogenesis was stopped by scrotal insulation, changes in the proteome profile revealed the sperm origin of 40 seminal proteins, such as glycolysis pathway enzymes, the chaperonin containing TCP1 (CCT) complex and the 26S proteasome complex. Sperm mobility after liquid preservation (24h in milk at 15°C) is male dependent and can be correlated to differences in the seminal plasma proteome, detected by spectral counting. The negative association of zinc alpha-2 glycoprotein (ZAG) with semen preservation was confirmed by the use of recombinant human ZAG, which induced an increase in mobility of fresh sperm, but then decreased sperm mobility after 24h of incubation. Several sperm membrane proteins interacting with the cytoskeleton, glycolysis enzymes and sperm-associated proteins involved in capacitation correlated with better liquid storage and can be considered as seminal biomarkers of sperm preservation. Biological significance Extensive analysis of the ram seminal plasma proteome reveals a complex and diverse protein composition. This composition varies between males with different sperm preservation abilities. Several proteins were shown to originate from the spermatozoa and positively correlate with sperm liquid preservation, indicating that these proteins can be traced as sperm biomarkers within the seminal plasma. The zinc alpha-2 glycoprotein (ZAG) was found to have a biphasic effect on sperm mobility, with a short-term stimulation followed by a long-term exhaustion of sperm mobility after a 24h preservation period.

There are no comments yet on this publication. Be the first to share your thoughts.