Affordable Access

Publisher Website

Flux pinning by columnar defects in Bi2Sr2CaCu2O8+ Ysingle crystals

Physica C Superconductivity
Publication Date
DOI: 10.1016/0921-4534(96)00277-8


Abstract We report the magnetization studies of as-grown and 200 MeV Ag-ion irradiated BSCCO single crystals. The maximum shift of the irreversibility line was observed for fluence level of 2.5 × 10 11ions/cm 2 with a corresponding B Φ = 5 T. Ag irradiation induces damage in the form of amorphous columnar tracks which penetrate throughout the thickness of the crystal. These defects are not only responsible to shift the irreversibility line but also make the dislocation networks present in the CuO 2 plane ineffective and hence the disappearance of the double-peak anomaly generally observed in the as-grown crystal. The angle dependence of the irradiated BSCCO crystal predicts the presence of unidirectional pinning and interlayer Josephson coupling. The 2D pancake vortices are not completely decoupled even up to T = 50 K. The magnetic relaxation in BSCCO crystals predicts the enhanced pinning upon irradiation and the line behaviour of flux-lattice which can exist up to high temperature. The pinning energies calculated using predicted Anderson-Kim model shows enhanced pinning energy upon irradiation. The columnar defects by heavy-ion irradiation have been proved to be an effective tool for enhancement of flux-pinning. Even after heavy-ion irradiation 2D nature of BSCCO crystal is preserved.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times

More articles like this

Vortex line pinning in Bi2Sr2CaCu2O8single crystal...

on Physica C Superconductivity Jan 01, 1994

Flux profiles in Bi2Sr2CaCu2O8crystals containing...

on Physica C Superconductivity Jan 01, 1994

Strong anisotropy and weak flux pinning in (BIPB)2...

on Physica C Superconductivity Jan 01, 1991

Flux pinning by columnar defects in Bi2Sr2CaCu2O8+...

on Nuclear Instruments and Method... Jan 01, 1998
More articles like this..