Affordable Access

Brushless DC permanent magnet micro-wind generator modeling and optimization over long-term wind-speed cycle operation

Authors
  • Laczko, Andreea-Adriana
Publication Date
Dec 14, 2016
Source
HAL
Keywords
Language
English
License
Unknown
External links

Abstract

The design of a micro-wind energy conversion system represents the core of this study. The attention is derived towards the brushless DC permanent magnet generator with outer rotor configuration and trapezoidal induced back-EMF voltages. The global aim of the thesis is represented by the attempt of determining the optimal geometrical and electrical design parameters of the BLDCPM generator that give the minimum total power losses in the system, over long-term wind speed cycle operation and thereby increasing the efficiency of the overall system. In advance to the optimization, an adapted simulation model needs to be developed in terms of results accuracy and simulation time. This is done in the first part of the thesis by determining the modeling level, as well as the design variables of each component of the system. As the optimization appeals to an algorithm for the design process, the reduction of the simulation time has been investigated in the third and fourth part of the thesis by developing a suitable method that allows the integration and exploitation of the available data from the wind-speed profile when determining the totality of the power losses in the system. Afterwards, the optimization methodology is presented along with the optimum results obtained, as well as comparison of several input/output parameters. Finally, experimental tests are also carried out on a reference BLDCPM machine prototype in order to verify its electronic commutation and control technique

Report this publication

Statistics

Seen <100 times