Affordable Access

Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

  • Hou, Yidong
  • Abrams, Billie L.
  • Vesborg, Peter Christian Kjærgaard
  • Björketun, Mårten E.
  • Herbst, Konrad
  • Bech, Lone
  • Setti, Alessandro M.
  • Damsgaard, Christian Danvad
  • Pedersen, Thomas
  • Hansen, Ole
  • Rossmeisl, Jan
  • Dahl, Søren
  • Nørskov, Jens K.
  • Chorkendorff, Ib
Publication Date
Jan 01, 2011
Online Research Database In Technology
External links


The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo3S 4) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory calculations of the Mo3S 4 clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site. © 2011 Macmillan Publishers Limited. All rights reserved.


Seen <100 times