Affordable Access

Binding of [3H]forskolin to rat brain membranes.

  • K B Seamon
  • R Vaillancourt
  • M Edwards
  • J W Daly
Publication Date
Aug 01, 1984
  • Biology


[12-3H]Forskolin (27 Ci/mmol) has been used to study binding sites in rat brain tissue by using both centrifugation and filtration assays. The binding isotherm measured in the presence of 5 mM MgCl2 by using the centrifugation assay is described best by a two-site model: Kd1 = 15 nM, Bmax1 (maximal binding) = 270 fmol/mg of protein; Kd2 = 1.1 microM; Bmax2 = 4.2 pmol/mg of protein. Only the high-affinity binding sites are detected when the binding is determined by using a filtration assay; Kd = 26 nM, Bmax = 400 fmol/mg of protein. Analogs of forskolin that do not activate adenylate cyclase (EC do not compete effectively for [3H]forskolin binding sites. Analogs of forskolin that are less potent than forskolin in activating adenylate cyclase are also less potent in competing for forskolin binding sites. The presence of 5 mM MgCl2 or MnCl2 was found to enhance binding. In the presence of 1 mM EDTA the amount of high-affinity binding is reduced to 110 fmol/mg of protein with no change in Kd. There is no effect of CaCl2 (20 mM) or NaCl (100 mM) on the binding. No high-affinity binding can be detected in membranes from ram sperm, which contains an adenylate cyclase that is not activated by forskolin. It is proposed that the high-affinity binding sites for forskolin are associated with the activated complex of catalytic subunit and stimulatory guanine nucleotide binding protein.

Report this publication


Seen <100 times