Affordable Access

deepdyve-link
Publisher Website

Bifurcation and chaos in the double well Duffing-van der Pol oscillator: Numerical and analytical studies

Authors
  • Venkatesan, A.
  • Lakshmanan, M.
Type
Preprint
Publication Date
Sep 11, 1997
Submission Date
Sep 11, 1997
Identifiers
DOI: 10.1103/PhysRevE.56.6321
arXiv ID: chao-dyn/9709013
Source
arXiv
License
Unknown
External links

Abstract

The behaviour of a driven double well Duffing-van der Pol (DVP) oscillator for a specific parametric choice ($\mid \alpha \mid =\beta$) is studied. The existence of different attractors in the system parameters ($f-\omega$) domain is examined and a detailed account of various steady states for fixed damping is presented. Transition from quasiperiodic to periodic motion through chaotic oscillations is reported. The intervening chaotic regime is further shown to possess islands of phase-locked states and periodic windows (including period doubling regions), boundary crisis, all the three classes of intermittencies, and transient chaos. We also observe the existence of local-global bifurcation of intermittent catastrophe type and global bifurcation of blue-sky catastrophe type during transition from quasiperiodic to periodic solutions. Using a perturbative periodic solution, an investigation of the various forms of instablities allows one to predict Neimark instablity in the $(f-\omega)$ plane and eventually results in the approximate predictive criteria for the chaotic region.

Report this publication

Statistics

Seen <100 times