Affordable Access

Calculation of CO 2 activities using scapolite equilibria: constraints on the presence and composition of a fluid phase during high grade metamorphism

Contributions to Mineralogy and Petrology
Publication Date


Thermodynamic and phase equilibrium data for scapolite have been used to calculate CO 2 activities ( a CO 2 ) and to evaluate the presence or absence of a fluid phase in high-grade scapolite bearing meta-anorthosite, granulites, calc-silicates, and mafix xenoliths. The assemblage scapolite-plagioclase-garnet±quartz may be used to calculate or limit a CO 2 by the reaction Meionite+Quartz = Grossular+Anorthite+CO 2 . Granulites from four high-grade terranes (Grenville Province, Canada; Sargut Belt, India; Furua Complex, Tanzania; Bergen Arcs, Norway) yield a CO 2 =0.4-1, with most >0.7. For scapolite-bearing granulites from the Furua Complex, in which a CO 2 ≥0.9, calculated H 2 O activities ( a H 2 O) based on phlogopite dehydration equilibria are uniformly low (0.1–0.2). The a CO 2 calculated for meta-anorthosite from the Grenville Province, Ontario, ranges from 0.2 to 0.8. For Grenville meta-anorthosite also containing epidote, the a H 2 O calculated from clinozoisite dehydration ranges from 0.2 to 0.6. Calc-silicates from the Grenville, Sargur, and Furua terranes mostly yield a CO 2 < 0.5. The presence of calcite and/or wollastonite provides additional evidence for the low a CO 2 in calc-silicates. Samples from six xenolith localities (Lashaine, Tanzania; Eifel, W. Germany; Lesotho; Delegate, Gloucester, and Hill 32, Australia) yield a wide range of a CO 2 (0.1 to >1). The calculated fluid activities are consistent with metamorphism (1) in the presence of a mixed CO 2 −H 2 O fluid phase in which CO 2 is the dominant fluid species but other C−O−H−S species are minor, (2) in the absence of a bulk fluid phase (“fluid-absent metamorphism”), or (3) in the presence of a fluid-bearing melt phase. The results for many granulites and Grenville meta-anorthosite are consistent with the presence of a CO 2 -rich, mixed CO 2 −H 2 O fluid phase. In contrast the relatively restricted and low values of a CO 2 for calc-silicates require an H 2 O-rich fluid or absence of a fluid phase during metamorphism. The range of values for xenoliths are most consistent with absence of a fluid phase. The primary implication of these results is that a CO 2 -rich fluid accounts for the reduced a H2 O in scapolite-bearing granulites. However, scapolite may be stable with a wide range of fluid compositions or in the absence of a fluid phase, and the presence of scapolite is not a priori evidence of a CO 2 -rich fluid phase. In addition, close association of scapolite-free mafic granulites with scapolite-bearing granulites having identical mineral compositions in the Furua Complex, and the absence of scapolite from most granulite terranes implies that a CO 2 -rich fluid phase is not pervasive on an outcrop scale or common to all granulite terranes.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times