Affordable Access

Role of Simian Virus 40 Vp1 Cysteines in Virion Infectivity

American Society for Microbiology
Publication Date
  • Replication
  • Biology
  • Medicine


We have developed a new nonoverlapping infectious viral genome (NO-SV40) in order to facilitate structure-based analysis of the simian virus 40 (SV40) life cycle. We first tested the role of cysteine residues in the formation of infectious virions by individually mutating the seven cysteines in the major capsid protein, Vp1. All seven cysteine mutants—C9A, C49A, C87A, C104A, C207S, C254A, and C267L—retained viability. In the crystal structure of SV40, disulfide bridges are formed between certain Cys104 residues on neighboring pentamers. However, our results show that none of these disulfide bonds are required for virion infectivity in culture. We also introduced five different mutations into Cys254, the most strictly conserved cysteine across the polyomavirus family. We found that C254L, C254S, C254G, C254Q, and C254R mutants all showed greatly reduced (around 100,000-fold) plaque-forming ability. These mutants had no apparent defect in viral DNA replication. Mutant Vp1's, as well as wild-type Vp2/3, were mostly localized in the nucleus. Further analysis of the C254L mutant revealed that the mutant Vp1 was able to form pentamers in vitro. DNase I-resistant virion-like particles were present in NO-SV40-C254L-transfected cell lysate, but at about 1/18 the amount in wild-type-transfected lysate. An examination of the three-dimensional structure reveals that Cys254 is buried near the surface of Vp1, so that it cannot form disulfide bonds, and is not involved in intrapentamer interactions, consistent with the normal pentamer formation by the C254L mutant. It is, however, located at a critical junction between three pentamers, on a conserved loop (G2H) that packs against the dual interpentamer Ca2+-binding sites and the invading C-terminal helix of an adjacent pentamer. The substitution by the larger side chains is predicted to cause a localized shift in the G2H loop, which may disrupt Ca2+ ion coordination and the packing of the invading helix, consistent with the defect in virion assembly. Our experimental system thus allows dissection of structure-function relationships during the distinct steps of the SV40 life cycle.

There are no comments yet on this publication. Be the first to share your thoughts.