Affordable Access

Shifting body weight-fecundity relationship in a capital breeder: maternal effects on egg numbers of the autumnal moth under field conditions

Publication Date
  • Ddc:590
  • Ecology
  • Geography
  • Mathematics


In the literature, various environmental factors are described as being capable of influencing the reproductive output of insect females irrespective of their body size. Still, female body size or weight is widely used as a proxy for fecundity. In the present study, a seven-year data set on the autumnal moth, Epirrita autumnata (Borkhausen) (Lepidoptera: Geometridae), was used to analyze whether the body weight-fecundity relationship in this capital breeding, cyclic forest defoliating lepidopteran is constant across years. Ambient temperature conditions and density of conspecifics during larval development, the length of the pupal period, as well as moth densities in the parent generation were examined as factors capable of modifying the body weight-fecundity relationship. While the regression slope of potential fecundity (total egg numbers per female) on pupal mass was constant across years, the mean total egg number per given body weight (the regression intercept) was significantly different between years. This residual variance in egg numbers after controlling for the effect of pupal mass was best explained by the pooled geometrid density (autumnal and winter moths) in the parent generation. The total egg number per given body weight decreased with increasing density of geometrid moths in the parent generation. Thus, maternal density effects on offspring fecundity were found in this system. Their rather weak nature suggests, however, that this maternal effect alone does not have the potential of causing cyclic population dynamics in the autumnal moth.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times