Affordable Access

Self-assembled peptide beads used as a template for ordered gold nanoparticle superstructures

Publication Date
  • Medicine


Using peptide-based materials to tailor self-assembled, nano-scaled hybrid materials with potentially high biocompatibility/biodegradability is gaining importance in developing a broad range of new applications, in areas such as diagnostics and medicine. Here, we investigated how the self-assembly ability of amphiphilic peptides can be used to create organized inorganic materials, i.e. gold nanoparticles. A bead-forming, purely peptidic amphiphile Ac-[K(Ac)]3-[W-l]3-W-NH2, containing acetylated (Ac) l-lysine (K), l-tryptophan (W) andd-leucine (l), was C-terminally modified with a l-cysteine (C) and linked to gold nanoparticles. Subsequent peptide-driven self-assembly of the peptide-coated gold nanoparticles with increasing water content led to controlled aggregation of the gold-core micelles, forming composite peptide-gold superstructures. The individual gold nanoparticles did not agglomerate but were separated from each other by a peptide film within the composite material, as revealed by electron microscopy studies. Structural investigation on 2D template-stripped gold demonstrated the ability of the peptides to form self-assembled monolayers. Structural elements of β-turns and weak hydrogen bonding of the hydrophobic moiety of the peptide were evident, thereby suggesting that the secondary structure remains intact.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times