Affordable Access

Basic interdomain boundary residues in calmodulin decrease calcium affinity of sites I and II by stabilizing helix-helix interactions.

Authors
Type
Published Article
Journal
Proteins Structure Function and Bioinformatics
1097-0134
Publisher
Wiley Blackwell (John Wiley & Sons)
Publication Date
Volume
50
Issue
3
Pages
381–391
Identifiers
PMID: 12557181
Source
Medline

Abstract

Calmodulin is an EF-hand calcium-binding protein (148 a.a.) essential in intracellular signal transduction. Its homologous N- and C-terminal domains are separated by a linker that appears disordered in NMR studies. In a study of an N-domain fragment of Paramecium CaM (PCaM1-75), the addition of linker residues 76 to 80 (MKEQD) raised the Tm by 9 degrees C and lowered calcium binding by 0.54 kcal/mol (Sorensen et al., [Biochemistry 2002;41:15-20]), showing that these tether residues affect energetics as well as being a barrier to diffusion. To determine the individual contributions of residues 74 through 80 (RKMKEQD) to stability and calcium affinity, we compared a nested series of 7 fragments (PCaM1-74 to PCaM1-80). For the first 4, PCaM1-74 through PCaM1-77, single amino acid additions at the C-terminus corresponded to stepwise increases in thermostability and decreases in calcium affinity with a net change of 13.5 degrees C in Tm and 0.55 kcal/mol in free energy. The thermodynamic properties of fragments PCaM1-77 through PCaM1-80 were nearly identical. We concluded that the 3 basic residues in the sequence from 74 to 77 (RKMK) are critical to the increased stability and decreased calcium affinity of the longer N-domain fragments. Comparisons of NMR (HSQC) spectra of 15N-PCaM1-74 and 15N-PCaM1-80 and analysis of high-resolution structural models suggest these residues are latched to amino acids in helix A of CaM. The addition of residues E78, Q79, and D80 had a minimal effect on sites I and II, but they may contribute to the mechanism of energetic communication between the domains.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments