Affordable Access

Growth properties of hyperplane integrals of Sobolev functions in a half space (Dedicated to Professor Masayuki Ito on the occasion of his sixtieth birthday)

Authors
Publication Date

Abstract

Shimomura, T. Osaka J. Math. 38 (2001), 759–773 GROWTH PROPERTIES OF HYPERPLANE INTEGRALS OF SOBOLEV FUNCTIONS IN A HALF SPACE Dedicated to Professor Masayuki Ito on the occasion of his sixtieth birthday TETSU SHIMOMURA (Received January 21, 2000) 1. Introduction Let D ⊂ R ( ≥ 2) denote the half space D = { = ( ′ ) ∈ R −1 × R1 : > 0} and set S = ∂D; we sometimes identify ′ ∈ R −1 with ( ′ 0) ∈ S. We define the hyperplane integral ( ) over S by ( ) = (∫ S | ( ′)| ′ )1/ for a measurable function on S and > 0. Set ( ′) = ( ′ )− −1∑ =0 ! [( ∂ ∂ ) ] ( ′ 0) for quasicontinuous Sobolev functions on D, where the vertical limits( ∂ ∂ ) ( ′ 0) = lim →0 ( ∂ ∂ ) ( ′ ) exist for almost every ′ = ( ′ 0) ∈ ∂D and 0 ≤ ≤ − 1 (see [8, Theorem 2.4, Chapter 8]). Our main aim in this note is to study the existence of limits of ( ) at = 0. More precisely, we show (in Theorem 3.1 below) that lim →0 −ω ( ) = 0 760 T. SHIMOMURA for some ω > 0. Consider the Dirichlet problem for polyharmonic equation ( ) = 0 with the boundary conditions( ∂ ∂ ) ( ′ 0) = ( ′) ( = 0 1 . . . − 1) We show (in Corollary 3.1 below) that if 1 < ≤ < ∞, / − ( − 1)/ < 1 and ∈ (D) is a solution of the Dirichlet problem with ( ′) = (∂/∂ ) ( ′ 0) for 0 ≤ ≤ − 1, then lim →0 / −( −1)/ − ( ) = 0 where ( ′) = ( ′ )−∑ −1 =0 ( / !) ( ′). To prove our results, we apply the integral representation in [6, 8]. For this pur- pose, we are concerned with -potentials defined by ( ) = ∫ ( − ) ( ) for functions on R satisfying weighted condition:∫ R | ( )| | |β <∞ In connection with our integral representation, ( ) is of the form λ| |− for a multi-index λ with length . Our basic fact is stated as follows (see Theorem 2.1 be- low): lim →0 / −( −1)/ − ( ) = 0 where ( ′) = ( ′ )−∑ −1 =0 ( / !)[(∂/∂ ) ]( ′). In the final section, we give growth estimates of higher differences of Sobolev functions. For related results, see Gardiner [2], Stoll [14, 15, 16] and Mizuta [5

There are no comments yet on this publication. Be the first to share your thoughts.