Affordable Access

Publisher Website

Alterations induced by gestational stress in brain morphology and behaviour of the offspring

Progress in Neurobiology
Publication Date
DOI: 10.1016/s0301-0082(01)00018-1
  • Mathematics


Abstract Retrospective studies in humans suggest that chronic maternal stress during pregnancy, associated with raised plasma levels of CRH, ACTH and cortisol may increase the likelihood of preterm birth, developmental delays and behavioural abnormalities in the children. In adulthood, it may contribute to the significant association between the incidence of schizophrenia, increased left or mixed handedness, reduction in cerebral asymmetry and anomalies in brain morphology. Our studies and others have shown that prenatal stress in rats can mimic these developmental and behavioural alterations. These rats show a reduced propensity for social interaction, increased anxiety in intimidating or novel situations and a reduction in cerebral asymmetry and dopamine turnover, consistent with those in schizophrenic humans. Prenatally-stressed (PS) rats also show behaviour consistent with depression, including a phase-shift in their circadian rhythm for corticosterone, sleep abnormalities, a hedonic deficit and greater acquisition of learned helplessness under appropriate conditions. These behavioural abnormalities are associated with impaired regulation of the hypothalamic–pituitary–adrenal axis response to stress and increased CRH activity. PS males may show demasculinisation and feminisation of their sexual behaviour. The developmental and behavioural abnormalities in PS offspring could occur through sensitisation of the foetal brain by maternal stress hormones to the action of glucocorticoid and CRH and to neurotransmitters affected by them. This may have long-lasting consequences and could explain the precipitation of depressive symptoms or schizophrenia by psychosocial stress in later life. The character of the behavioural abnormalities probably depends on the timing of the maternal stress in relation to development of the particular neuronal systems.

There are no comments yet on this publication. Be the first to share your thoughts.