Affordable Access

Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria.

Publication Date
  • Research Article
  • Biology


An Altamont soil containing no measurable population of chlorobenzoate utilizers was examined for the potential to enhance polychlorinated biphenyl (PCB) mineralization by inoculation with chlorobenzoate utilizers, a biphenyl utilizer, combinations of the two physiological types, and chlorobiphenyl-mineralizing transconjugants. Biphenyl was added to all soils, and biodegradation of 14C-Aroclor 1242 was assessed by disappearance of that substance and by production of 14CO2. Mineralization of PCBs was consistently greatest (up to 25.5%) in soils inoculated with chlorobenzoate degraders alone. Mineralization was significantly lower in soils receiving all other treatments: PCB cometabolizer (10.7%); chlorobiphenyl mineralizers (8.7 and 14.9%); and mixed inocula of PCB cometabolizers and chlorobenzoate utilizers (11.4 and 18.0%). However, all inoculated soils had higher mineralization than did the uninoculated control (3.1%). PCB disappearance followed trends similar to that observed with the mineralization data, with the greatest degradation occurring in soils inoculated with the chlorobenzoate-degrading strains Pseudomonas aeruginosa JB2 and Pseudomonas putida P111 alone. While the mechanism by which the introduction of chlorobenzoate degraders alone enhanced biodegradation of PCBs could not be elucidated, the possibility that chlorobenzoate inoculants acquired the ability to metabolize biphenyl and possibly PCBs was explored. When strain JB2, which does not utilize biphenyl, was inoculated into soil containing biphenyl and Aroclor 1242, the frequency of isolates able to utilize biphenyl and 2,5-dichlorobenzoate increased progressively with time from 3.3 to 44.4% between 15 and 48 days, respectively. Since this soil contained no measurable level of chlorobenzoate utilizers yet did contain a population of biphenyl utilizers, the possibility of genetic transfer between the latter group and strain JB2 cannot be excluded.

There are no comments yet on this publication. Be the first to share your thoughts.