Affordable Access

Publisher Website

Geochemistry, water balance, and stable isotopes of a “clean” pit lake at an abandoned tungsten mine, Montana, USA

Applied Geochemistry
DOI: 10.1016/j.apgeochem.2013.06.011
  • Earth Science
  • Geography


Abstract The Calvert Mine is a small tungsten-rich (scheelite) skarn deposit in a remote, mountainous region of southwest Montana, USA. The open-pit mine closed in the 1970s and subsequently flooded to form a pit lake that is roughly conical in shape, 30m deep and 120m in diameter, with no surface inlet or outlet. The lake is holomictic with a groundwater flow-through hydrology and an estimated residence time of 2.5–5y. Water isotopes show that the lake is at an approximate steady state with respect to water balance and has experienced 30% evaporation. The lake has a near-neutral pH, exceptional clarity, and extremely low concentrations of nutrients, sulfate, and most metals, including tungsten. Manganese concentrations are slightly elevated and increase with depth towards the sediment–water interface. Despite seasonally anoxic conditions in the deep water, dissolved Fe concentrations are orders of magnitude lower than Mn, suggesting that insufficient organic carbon is present in the sediment of this oligotrophic lake to drive bacterial Fe reduction. Based on stable isotope fingerprinting, diffuse seepage that enters a nearby headwater stream at the base of a large waste-rock pile can be directly linked to the partially evaporated pit lake. However, this seepage has neutral pH and low metal concentrations, and poses no threats to the environment. Stable isotopes of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) are used to track the relative importance of photosynthesis and respiration with depth. In summer, a zone of high productivity exists near the base of the chemocline, releasing DO that is isotopically light. Respiration exceeds photosynthesis below the Secchi depth, which causes DO concentrations to approach zero towards the bottom of the lake. In winter, thick ice and snow cover prohibits photosynthesis. However, because of the low nutrient content, most of the volume of the lake remains oxic through the winter. Overall, the Calvert Lake is a good example of a pit lake formed from metal mining that has excellent water quality, which is a result of its favorable geology (paucity of sulfide minerals) and hydrology (flow-through lake with short residence time in a temperate climate).

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times