Affordable Access

Publisher Website

On the relation between quantum mechanical probabilities and event frequencies

Authors
Journal
Annals of Physics
0003-4916
Publisher
Elsevier
Publication Date
Volume
313
Issue
2
Identifiers
DOI: 10.1016/j.aop.2004.05.002
Keywords
  • Quantum Probability
Disciplines
  • Physics

Abstract

Abstract The probability `measure' for measurements at two consecutive moments of time is non-additive. These probabilities, on the other hand, may be determined by the limit of relative frequency of measured events, which are by nature additive. We demonstrate that there are only two ways to resolve this problem. The first solution places emphasis on the precise use of the concept of conditional probability for successive measurements. The physically correct conditional probabilities define additive probabilities for two-time measurements. These probabilities depend explicitly on the resolution of the physical device and do not, therefore, correspond to a function of the associated projection operators. It follows that quantum theory distinguishes between physical events and propositions about events, the latter are not represented by projection operators and that the outcomes of two-time experiments cannot be described by quantum logic. The alternative explanation is rather radical: it is conceivable that the relative frequencies for two-time measurements do not converge, unless a particular consistency condition is satisfied. If this is true, a strong revision of the quantum mechanical formalism may prove necessary. We stress that it is possible to perform experiments that will distinguish the two alternatives.

There are no comments yet on this publication. Be the first to share your thoughts.