Affordable Access

Publisher Website

DNA Display I. Sequence-Encoded Routing of DNA Populations

Authors
Journal
PLoS Biology
1544-9173
Publisher
Public Library of Science
Publication Date
Volume
2
Issue
7
Identifiers
DOI: 10.1371/journal.pbio.0020173
Keywords
  • Research Article
  • Biotechnology
  • In Vitro
Disciplines
  • Biology
  • Chemistry
  • Computer Science
  • Design

Abstract

Recently reported technologies for DNA-directed organic synthesis and for DNA computing rely on routing DNA populations through complex networks. The reduction of these ideas to practice has been limited by a lack of practical experimental tools. Here we describe a modular design for DNA routing genes, and routing machinery made from oligonucleotides and commercially available chromatography resins. The routing machinery partitions nanomole quantities of DNA into physically distinct subpools based on sequence. Partitioning steps can be iterated indefinitely, with worst-case yields of 85% per step. These techniques facilitate DNA-programmed chemical synthesis, and thus enable a materials biology that could revolutionize drug discovery.

There are no comments yet on this publication. Be the first to share your thoughts.