Affordable Access

Design, characterization and functionalization of DNA materials

Authors
Publisher
Ludwig-Maximilians-Universität München
Publication Date
Keywords
  • Fakultät Für Physik

Abstract

DNA wird seit einigen Jahren zur Herstellung von Strukturen mit Nanometer Präzision genutzt. Mittels der am häufigsten verwendeten Techniken, “Tile” und “ DNA Origami”, wurden verschiedenste DNA Objekte wie unter anderem DNA Kristalle, DNA Nanotubes, gebogene und verdrehte Zylinder und selbst komplexe 3D Strukturen hergestellt. Aufgrund der einzigartigen Kontrolle über die räumliche Anordnung von DNA Molekülen wird DNA Nanotechnologie heute in verschiedensten Forschungsgebieten wie struktureller Biologie, Nanomedizin, Einzel-Molekül Detektion oder Plasmon-Forschung verwendet. In dieser Arbeit wird systematisch die Biege-Steifigkeit (Persistenz Länge) von DNA Nanotubes (HX-Tubes) als Funktion des Umfangs untersucht. Dazu wurden mikrometer- weite thermische Nanotube Fluktuationen mittels Fluoreszenz Mikroskopie analysiert (A,B). Zusätzlich wurden intrinsische und thermische Nanotube Verdrehungen durch Anbindung von Gold-Nanopartikeln (AuNP) und Transmissions Elektronen Mikroskopie (TEM) sicht- bar gemacht (C). Aus diesen Messungen ergibt sich, dass die Peristenz Länge sich pro- portional zum Flächenträgheitsmoment des Nanotube Querschnitts verhält, intrinsische Verdrehungen nur auftreten, wenn sie durch die DNA Sequenzen vorgegeben sind und dass thermische Verdrehungen u ̈ber sehr viel kürzere Distanzen als die Persistenz Länge auftreten. Des weiteren wurde ein DNA Nanotube Elastizitäts-Modell hergeleitet, das Ver- formungen von doppelstängiger DNA sowie von Cross-Overn berücksichtigt und gezeigt, dass alle Messungen in guter Übereinstimmung mit dem Modell sind. Um ein besseres Verständnis für den Zusammenhang zwischen Persistenz Länge und dem Aufbau von DNA Nanotubes auf der Ebene einzelner DNA Moleküle zu gewinnen wurden die thermischen Verbiegungen von verschiedenen sechs-Helix-Tubes mit unterschiedlichen DNA Architekturen untersucht. Die Ergebnisse zeigen, dass das Anordnen von mehreren Cross-Overn innerhalb einer Tube Querschnittsfläche sowie die Verringerung der Dichte von DNA Cross-Overn die Persistenz Länge verringert. Die Ergebnisse werden im Rahmen des zuvor hergeleiteten Elastizitäts Modell diskutiert. Es wurden verschiedene Strategien zur Herstellung von gebogenen und verdrehten DNA Nanotubes entwickelt. Biegung und Drehung wurden durch gezielte Einfügung oder Auslassung von Basenpaaren, speziell programmierten Faltungswegen, oder spezielle Anordnung von komplementären DNA Sequenzen innerhalb der Nanotubes kontrolliert. Nanotube Konturen wurden mittels TEM, Rasterkraftmikroskopie (AFM), UV-Absorption, sowie stochastischer optischer Rekonstruktionsmikroskopie (STORM) charakterisiert. Die Mes- sungen zeigen, dass gebogene Nanotubes meist geschlossene Ringe bilden und Nanotubes mit Biegung und Drehung helix-förmig sind (D). Es wird gezeigt, dass Anbindung des organischen Farbstoffs Cy3 an einen oder mehrere DNA Stränge der HX-Tubes ebenfalls zur Ausbildung von Helix-förmigen Nanotubes führt (E). Ganghöhe und Radius der Nanotubes mit Cy3 Anbindung wurden systematisch in Abhängigkeit der Cy3-Bindungsposition gemessen und das Ergebnis mit einem einfachen Cy3-DNA Bindungsmodell verglichen. Des weiteren wurden die optischen Eigenschaften von Cy3 Moleku ̈len, gebunden an HX-Tubes mittels Fluoreszens-Polaristations-Mikroskopie (FPM) und Fluoreszenslebensdauer Messungen untersucht. Es wurde ein Zusammenhang zwischen Anisotropie (gemessen mittels FPM) und der Orientierung der Cy3 Dipol Achse hergeleitet. Die beobachtete Anisotropie entspricht in diesem Modell einem Winkel von ca. 60° zwischen Cy3-Dipol und DNA Achse. Es wird gezeigt, dass die Ausbildung von fluoreszenten Silber Clustern, bestehend aus wenigen Atomen (Ag-DNA) innerhalb von einzelsträngigen “DNA hairpins” an der Oberfläche von DNA Nanotubes stattfinden kann (F). DNA Nanotubes mit Ag-DNA Clustern sind fluoreszent und konnten mittels Fluoreszenz Mikroskopie sichtbar gemacht werden. Als Nebenprodukt der Ag-DNA Synthese wurde Aggregation von DNA Nanotubes beobachtet. Es wurden zwei neue Methoden zur Weiterentwicklung der DNA Origami Methode untersucht: 1) Kristallisierung von rechteckigen DNA Origami Strukturen zu 1D Ketten und 2D Gittern (G) und 2) Anbindung von “Tiles” an einer DNA origami “Schablone”. Die Faltungs-Ausbeute beider Strategien wurde mittels Gel Elektrophorese, TEM und AFM charakterisiert. Schließlich wird im letzten Kapitel eine Sammlung von Matlab Programmen vorgestellt, die benutzt wurden um DNA Nanotube Kontouren automatisch aus Bild Daten auszulesen, Persistenz Länge zu bestimmen, polarisierte Fluoreszenz Bilder auszuwerten und DNA Sequenzen zu generieren.

There are no comments yet on this publication. Be the first to share your thoughts.