Affordable Access

Publisher Website

The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity

Gene Therapy
Nature Publishing Group
Publication Date
DOI: 10.1038/gt.2010.170
  • Original Article
  • Design
  • Medicine


Owing to its tumor tropism and prolonged transgene expression, mesenchymal stem cell (MSC) has been considered as an ideal delivery vehicle for cancer gene therapies or therapeutic vaccines. In this study, we demonstrated that intratumoral (i.t.) injection of MSCs expressing modified interleukin-12 (MSCs/IL-12M) exhibited stronger tumor-specific T-cell responses and antitumor effects as well as more sustained expressions of IL-12 and interferon (IFN)-γ in both sera and tumor sites than did IL-12M-expressing adenovirus (rAd/IL-12M) in mice bearing both solid and metastatic tumors. Subcutaneous (s.c.) injection of MSCs/IL-12M at contralateral site of tumor exhibited similar levels of serum IL-12 and IFN-γ as i.t. injection, but much weaker antitumor effects in both B16F10 melanoma and TC-1 cervical cancer models than i.t. injection. Although intravenous (i.v.) injection elicited earlier peak serum levels of cytokines, it induced weaker tumor-specific T-cell responses and antitumor effects than i.t. injection, indicating that serum cytokine levels are not surrogate indicators of antitumor effects. Taken together, these results indicated that MSC is more efficient than adenovirus as a cytokine gene delivery vehicle and that i.t. injection of MSCs/IL-12M is the best approach to induce strong tumor-specific T-cell responses that correlate with anti-metastatic effects as well as inhibition of solid tumor growth, although MSCs themselves have an ability to migrate into the tumor site. In addition, MSCs/IL-12M embedded in Matrigel (MSCs/IL-12M/Matrigel) exhibited significant antitumor effects even in immunodeficient mice such as SCID and BNX mice lacking T, B and natural killer (NK) cells, but not in IFN-γ knockout mice. Our findings provide an optimal approach for designing an efficient clinical protocol of MSC-based cytokine gene therapy to induce strong tumor-specific T-cell responses and therapeutic anticancer efficacy.

There are no comments yet on this publication. Be the first to share your thoughts.