Affordable Access

Ontogeny of Human Striatal DARPP-32 Neurons in Fetuses and Following Xenografting to the Adult Rat Brain

Experimental Neurology
Publication Date
DOI: 10.1006/exnr.1996.0002
  • Chemistry
  • Law
  • Medicine


Abstract After a number of reports indicating positive clinical outcome of intrastriatal transplantation of fetal ventral mesencephalic tissue into patients with Parkinson’s disease, the time may have come to consider the possibility of using this technique to treat patients with Huntington’s disease. On the basis of the available literature, the Network of European CNS Transplantation and Restoration has established a program aiming at defining the optimal conditions for such clinical trials. The present study, conducted within this framework, pursued the goal of providing information concerning the period of striatal neuronal ontogeny in humans, taking into account the technical and legal requirements imposed by the clinical procedure of neural transplantation using human tissue. On this basis, it aimed at establishing a reliable dissecting method for the intrastriatal grafting of human fetal striatal neurons. The ontogeny of medium-spiny neurons within the developing striatum was first studied in a series of human fetal brains, 5 to 10 weeks postconception, using immunocytochemical detection of DARPP-32. Immunoreactive neurons were observed in fetuses at 7 weeks of age and older. They were mostly localized in clusters, packed in the lateral ganglionic eminence. Over a 2-week-long period, DARPP-32 neurons increased in number. Their morphology remained poorly differentiated, however, with small cell bodies, few branched dendrites, and variable intensity of immunostaining. Based on these findings, selective dissection of the lateral ganglionic eminence was carried out. This tissue was stereotaxically implanted into the striatum of immunosuppressed adult rats previously lesioned. Two months postgrafting, DARPP-32 neurons were observed as discrete patches, embedded within areas of essentially DARPP-32-negative tissue. Up to 2 months after grafting, neurons remained poorly differentiated in general, with only a few neurons exhibiting a dense immunoreactivity and long processes. These results indicate that striatal DARPP-32-immunoreactive neurons are present in the lateral ganglionic eminence in fetuses as soon as 7 weeks postconception. The striatal tissue can be dissected out and successfully transplanted. Within the grafts, neuronal differentiation appears to be a very long process, suggesting that many months might be necessary for these neurons to become functionally integrated into an adult host brain.

There are no comments yet on this publication. Be the first to share your thoughts.