Affordable Access

Automorphism Groups of Geometrically Represented Graphs

Authors
  • Klavík, Pavel
  • Zeman, Peter
Type
Preprint
Publication Date
Aug 04, 2015
Submission Date
Jul 08, 2014
Identifiers
arXiv ID: 1407.2136
Source
arXiv
License
Yellow
External links

Abstract

We describe a technique to determine the automorphism group of a geometrically represented graph, by understanding the structure of the induced action on all geometric representations. Using this, we characterize automorphism groups of interval, permutation and circle graphs. We combine techniques from group theory (products, homomorphisms, actions) with data structures from computer science (PQ-trees, split trees, modular trees) that encode all geometric representations. We prove that interval graphs have the same automorphism groups as trees, and for a given interval graph, we construct a tree with the same automorphism group which answers a question of Hanlon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and circle graphs, we give an inductive characterization by semidirect and wreath products. We also prove that every abstract group can be realized by the automorphism group of a comparability graph/poset of the dimension at most four.

Report this publication

Statistics

Seen <100 times