Affordable Access

deepdyve-link
Publisher Website

Atomoxetine modulates the relationship between perceptual abilities and response bias.

Authors
  • Guedj, Carole1, 2
  • Reynaud, Amélie3, 4
  • Monfardini, Elisabetta3, 4
  • Salemme, Romeo3, 4
  • Farnè, Alessandro3, 4
  • Meunier, Martine3, 4
  • Hadj-Bouziane, Fadila5, 6
  • 1 INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, 16 Avenue Doyen Lépine, 69500, Bron, France. [email protected] , (France)
  • 2 University UCBL Lyon 1, F-69000, Villeurbanne, France. [email protected] , (France)
  • 3 INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, 16 Avenue Doyen Lépine, 69500, Bron, France. , (France)
  • 4 University UCBL Lyon 1, F-69000, Villeurbanne, France. , (France)
  • 5 INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, 16 Avenue Doyen Lépine, 69500, Bron, France. [email protected] , (France)
  • 6 University UCBL Lyon 1, F-69000, Villeurbanne, France. [email protected] , (France)
Type
Published Article
Journal
Psychopharmacology
Publication Date
Dec 01, 2019
Volume
236
Issue
12
Pages
3641–3653
Identifiers
DOI: 10.1007/s00213-019-05336-7
PMID: 31384989
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Elucidation of how neuromodulators influence motivated behaviors is a major challenge of neuroscience research. It has been proposed that the locus-cœruleus-norepinephrine system promotes behavioral flexibility and provides resources required to face challenges in a wide range of cognitive processes. Both theoretical models and computational models suggest that the locus-cœruleus-norepinephrine system tunes neural gain in brain circuits to optimize behavior. However, to the best of our knowledge, empirical proof demonstrating the role of norepinephrine in performance optimization is scarce. Here, we modulated norepinephrine transmission in monkeys performing a Go/No-Go discrimination task using atomoxetine, a norepinephrine-reuptake inhibitor. We tested the optimization hypothesis by assessing perceptual sensitivity, response bias, and their functional relationship within the framework of the signal detection theory. We also manipulated the contingencies of the task (level of stimulus discriminability, target stimulus frequency, and decision outcome values) to modulate the relationship between sensitivity and response bias. We found that atomoxetine increased the subject's perceptual sensitivity to discriminate target stimuli regardless of the task contingency. Atomoxetine also improved the functional relationship between sensitivity and response bias, leading to a closer fit with the optimal strategy in different contexts. In addition, atomoxetine tended to reduce reaction time variability. Taken together, these findings support a role of norepinephrine transmission in optimizing response strategy.

Report this publication

Statistics

Seen <100 times