Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control.

Authors
  • Ruffino, Francesco
  • Torrisi, Vanna
  • Marletta, Giovanni
  • Grimaldi, Maria Grazia
Type
Published Article
Journal
Nanoscale Research Letters
Publisher
Springer (Biomed Central Ltd.)
Publication Date
Jan 01, 2011
Volume
6
Issue
1
Pages
112–112
Identifiers
DOI: 10.1186/1556-276X-6-112
PMID: 24576328
Source
Medline
License
Unknown

Abstract

The study of surface morphology of Au deposited on mica is crucial for the fabrication of flat Au films for applications in biological, electronic, and optical devices. The understanding of the growth mechanisms of Au on mica allows to tune the process parameters to obtain ultra-flat film as suitable platform for anchoring self-assembling monolayers, molecules, nanotubes, and nanoparticles. Furthermore, atomically flat Au substrates are ideal for imaging adsorbate layers using scanning probe microscopy techniques. The control of these mechanisms is a prerequisite for control of the film nano- and micro-structure to obtain materials with desired morphological properties. We report on an atomic force microscopy (AFM) study of the morphology evolution of Au film deposited on mica by room-temperature sputtering as a function of subsequent annealing processes. Starting from an Au continuous film on the mica substrate, the AFM technique allowed us to observe nucleation and growth of Au clusters when annealing process is performed in the 573-773 K temperature range and 900-3600 s time range. The evolution of the clusters size was quantified allowing us to evaluate the growth exponent 〈z〉 = 1.88 ± 0.06. Furthermore, we observed that the late stage of cluster growth is accompanied by the formation of circular depletion zones around the largest clusters. From the quantification of the evolution of the size of these zones, the Au surface diffusion coefficient was evaluated in D(T) = [(7.42 × 10-13) ± (5.94 × 10-14) m2/s]exp(-(0.33±0.04) eVkT). These quantitative data and their correlation with existing theoretical models elucidate the kinetic growth mechanisms of the sputtered Au on mica. As a consequence we acquired a methodology to control the morphological characteristics of the Au film simply controlling the annealing temperature and time.

Report this publication

Statistics

Seen <100 times