Affordable Access

[Atmospheric Particle Retaining Function of Common Deciduous Tree Species Leaves in Beijing].

Authors
  • Wang, Bing
  • Wang, Xiao-yan
  • Niu, Xiang
  • Zhang, Wei-kang
  • Wang, Jin-song
Type
Published Article
Journal
Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.]
Publication Date
Jun 01, 2015
Volume
36
Issue
6
Pages
2005–2009
Identifiers
PMID: 26387301
Source
Medline
License
Unknown

Abstract

In order to explore the atmospheric particle-retaining function of common deciduous tree species leaves in Beijing, six typical tree species (Populus, Robinia pseudoacacia, Koelreuteria paniculata, Salix babylonica, Acer truncatum, Ginkgo biloba) were chosen to measure retaining amount of unit leaf area of air total suspended particles (TSP), coarse particles and fine particulate with aerosol generator (QRJZFSQ-I). The results showed that (1) All six tree species leaves had a certain level of retaining ability to different sizes of atmospheric particles, and different species exhibited some differences. For different sizes of atmospheric particle, retaining amounts of unit leaf area were higher in Koelreuteria paniculata and Robinia pseudoacacia than those of other four species, and the amount of Populus was the lowest among all tree species; (2) The retaining amount of unit leaf area for different tree species was not entirely increased with sampling time. The retaining amounts of TSP and coarse particles for all tree species on the eighth day after rain were significantly higher than those on the fifth day after rain, however, the retaining amount of fine particles was not significantly different under different sampling times. In order to select deciduous tree species for ecological management of air pollution in Beijing, Koelreuteria paniculata should be considered as the priority, followed by Robinia pseudoacacia, compared with Ginkgo biloba, Salix babylonica, Acer truncatum and Populus.

Report this publication

Statistics

Seen <100 times