Affordable Access

deepdyve-link
Publisher Website

Assessing the Clinical Impact of Risk Models for Opting Out of Treatment.

Authors
  • Kerr, Kathleen F1
  • Brown, Marshall D2
  • Marsh, Tracey L2
  • Janes, Holly2
  • 1 Department of Biostatistics, University of Washington, Seattle, WA.
  • 2 Fred Hutchinson Cancer Research Center Seattle, WA.
Type
Published Article
Journal
Medical decision making : an international journal of the Society for Medical Decision Making
Publication Date
Feb 01, 2019
Volume
39
Issue
2
Pages
86–90
Identifiers
DOI: 10.1177/0272989X18819479
PMID: 30649998
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Decision curves are a tool for evaluating the population impact of using a risk model for deciding whether to undergo some intervention, which might be a treatment to help prevent an unwanted clinical event or invasive diagnostic testing such as biopsy. The common formulation of decision curves is based on an opt-in framework. That is, a risk model is evaluated based on the population impact of using the model to opt high-risk patients into treatment in a setting where the standard of care is not to treat. Opt-in decision curves display the population net benefit of the risk model in comparison to the reference policy of treating no patients. In some contexts, however, the standard of care in the absence of a risk model is to treat everyone, and the potential use of the risk model would be to opt low-risk patients out of treatment. Although opt-out settings were discussed in the original decision curve paper, opt-out decision curves are underused. We review the formulation of opt-out decision curves and discuss their advantages for interpretation and inference when treat-all is the standard.

Report this publication

Statistics

Seen <100 times