Affordable Access

Asparagine-linked glycoprotein biosynthesis in rat brain: identification of glucosidase I, glucosidase II, and and endomannosidase (glucosyl mannosidase).

Authors
Type
Published Article
Journal
Archives of biochemistry and biophysics
Publication Date
Volume
277
Issue
1
Pages
114–121
Identifiers
PMID: 2407194
Source
Medline
License
Unknown

Abstract

Previous studies from this laboratory provided evidence, largely based upon the presence of a novel alpha-D-mannosidase, suggesting that the biosynthesis of N-linked glycoproteins may be different in brain as compared to other tissues (Tulsiani, D. R. P., and Touster, O. (1985) J. Biol. Chem. 260, 13,081-13,087). In the present report we describe studies on the enzymes involved in early processing reactions. These studies indicate that the brain, like other tissues, contains glucosidases I and II. The two glucosidases were separated as distinct activities with some overlapping by chromatography on a DE-52 column. The differential inhibition studies and substrate specificity studies support our conclusion that, as in other tissues, rat brain glucosidase I cleaves alpha 1,2-linked terminal glucosyl residues, whereas glucosidase II prefers alpha 1,3-linked glucosyl residues. In addition to these two processing glucosidases, we have characterized an endo enzyme (glucosyl mannosidase) in rat brain. The endomannosidase cleaves a disaccharide (glucosyl alpha 1,3-mannose) from monoglucosylated oligosaccharides (GlcMan7-9GlcNAc). Little or no activity was observed when di- or triglucosylated oligosaccharide was used as a substrate. The pH optimum of the glucosyl mannosidase is 6.2-6.8. The enzyme appears to be an intrinsic microsomal membrane component, since washing of the microsomal membranes with salt solution did not release the enzyme in soluble form. A mixture of Triton X-100 and sodium deoxycholate is required for complete solubilization of the enzyme. The solubilized enzyme is eluted from a Bio-Gel A-1.5m column as a single peak with an apparent molecular weight of 380,000.

Statistics

Seen <100 times