Affordable Access

Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study

  • Cauwenberghs, Nicholas; 98967;
  • Tabassian, Mahdi; 107030;
  • Thijs, Lutgarde; 16833;
  • Yang, Wen-Yi;
  • Wei, Fang-Fei;
  • Claus, Piet; 15250;
  • D'hooge, Jan; 14531;
  • Staessen, Jan A; 13621;
  • Kuznetsova, Tatiana; 36747;
Publication Date
Aug 05, 2019
External links


BACKGROUND: Previous studies highlighted the usefulness of integrating left ventricular (LV) deformation (strain) and hemodynamic parameters to quantify LV performance. In a population sample, we investigated the anthropometric and clinical determinants of a novel non-invasive index of LV systolic performance derived from simultaneous registration of LV strain and brachial pressure waveforms. METHODS: Three hundred fifty-six randomly recruited subjects (44.7% women; mean age, 53.9 years; 47.5% hypertensive) underwent echocardiographic and arterial data acquisition. We constructed pressure-strain loops from simultaneously recorded two-dimensional LV strain curves and brachial pressure waveforms obtained by finger applanation tonometry. We defined the area of this pressure-strain loop during ejection as LV ejection work density (EWD). We reported effect sizes as EWD changes associated with a 1-SD increase in covariables. RESULTS: In multivariable-adjusted analyses, higher EWD was associated with age, female sex and presence of hypertension (P ≤ 0.0084). In both men and women, EWD increased independently with augmentation pressure (effect size: + 59.1 Pa), central pulse pressure (+ 65.7 Pa) and pulse wave velocity (+ 44.8 Pa; P ≤ 0.0006). In men, EWD decreased with relative wall thickness (- 29.9 Pa) and increased with LV ejection fraction (+ 23.9 Pa; P ≤ 0.040). In women, EWD increased with left atrial (+ 76.2 Pa) and LV end-diastolic (+ 43.8 Pa) volume indexes and with E/e' ratio (+ 51.1 Pa; P ≤ 0.026). CONCLUSION: Older age, female sex and hypertension were associated with higher EWD. Integration of the LV pressure-strain loop during ejection might be a useful tool to non-invasively evaluate sex-specific and interdependent effects of preload and afterload on LV myocardial performance. / status: published

Report this publication


Seen <100 times