Affordable Access

deepdyve-link
Publisher Website

Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors.

Authors
  • Schiessl, Katharina1
  • Muiño, Jose M
  • Sablowski, Robert
  • 1 Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, United Kingdom. , (United Kingdom)
Type
Published Article
Journal
Proceedings of the National Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Publication Date
Feb 18, 2014
Volume
111
Issue
7
Pages
2830–2835
Identifiers
DOI: 10.1073/pnas.1320457111
PMID: 24497510
Source
Medline
Keywords
License
Unknown

Abstract

Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.

Report this publication

Statistics

Seen <100 times