Affordable Access

Approche multiéchelle en espace et en temps pour la prévision des endommagements dans les structures composites soumises à un impact de faible énergie

Authors
  • Chantrait, Teddy
Publication Date
Dec 17, 2014
Source
HAL-UPMC
Keywords
Language
French
License
Unknown
External links

Abstract

Les stratifiés composites sont de plus en plus utilisés dans les pièces de structures des aéronefs ce qui fait émerger de nouvelles problématiques comme celle des Impacts de Faible Energie (IFE). En effet, bien qu’ils possèdent des propriétés rapportées à leur masse très intéressantes ces matériaux peuvent être vulnérables aux petits chocs. Or, compte tenu des nombreux paramètres influents lors d’un tel impact (énergie, vitesse, stratification...), les essais actuellement majoritairement privilégiés à l’échelle industrielle sont long et coûteux. Ainsi, l’apport de la simulation numérique pourrait être d’une grande aide pour les constructeurs. La pratique du « virtual testing », en particulier, permettrait d’aller dans cette direction ce qui aurait pour effet de rationaliser les campagnes d’essais et les coûts financier qui en découlent. Cependant, elle peine à être mise en place ici car le temps CPU nécessaire pour la simulation fine des ndommagements induits par les IFE est trop important avec les méthodes actuelles. Partant de ce constat, ce travail a consisté à tirer avantageusement partie de la localisation spatiale et temporelle des délaminages, fissurations matricielles et ruptures de fibres qui peuvent apparaître pendant l’impact pour diminuer le coût de calcul. Ainsi une méthode multiéchelle en espace et en temps a été mise en place. Elle consiste à découper la structure impactée en deux zones. L’une est située autour du point d’impact, elle contient l’ensemble des non-régularités du problème (contact, loi adoucissante, modèle de zone cohésive). Elle est traitée avec le code de dynamique explicite Europlexus. L’autre correspond à la partie complémentaire. Le problème mécanique y est beaucoup plus régulier et il est traité avec le code de dynamique implicite Zset/Zébulon. Un couplage peu intrusif basé sur la méthode GC est donc réalisé entre ces deux codes. Il permet d’utiliser une modélisation adaptée dans chacune des deux régions ce qui permet en particulier d’utiliser des pas de temps différents. Un rapport supérieur à 1000 peut ainsi être obtenu entre celui du code explicite fixé par la condition de stabilité et celui utilisé dans la partie complémentaire. Un gain de temps CPU significatif confirmé par la simulation d’un impact réalisé sur un panneau composite raidi est ainsi obtenu. Il est également montré que la répartition implicite/explicite peut évoluer au cours du calcul. Pour cela un mécanisme de bascule a été mis en place. Il permet ainsi de faire transiter la résolution d’une partie de la structure initialement traitée dans le code Zebulon dans Europlexus. Un gain de temps supplémentaire est alors obtenu grâce à cette méthode sur le même cas d’application.

Report this publication

Statistics

Seen <100 times