Affordable Access

Apoptotic mitochondrial pathway in neuron and astrocyte after neonatal hypoxia-ischemia in the rat brain.

  • Benjelloun, N.
  • M. Joly, L.
  • Palmier, B.
  • Plotkine, M.
  • Charriaut-Marlangue, C.
Publication Date
Jan 01, 2003
External links


Neuronal apoptosis plays an essential role in early brain development and contributes to secondary neuronal loss after acute ischaemia. Recent studies have provided evidence that caspase-3 is an important downstream event after hypoxia-ischaemia in the immature brain, but a minor event in the adult brain. Our investigations have focused on cell populations that expressed apoptotic effectors in the enzymatic death pathway including cytochrome c, caspase-9 and caspase-3. Expression, activation and cellular localization of these proteins were studied using cleavage of fluorogenic substrate and immunohistochemistry in neonatal rat brain after unilateral focal ischaemia. Caspase-3 enzyme activity was elevated in brain homogenate between 6 and 48 h after reperfusion. This activation was preceded by that of caspase-9, between 3 and 24 h. Apoptotic cell death was finally accomplished by poly-ADP-ribose polymerase cleavage, an endogenous caspase-3 substrate. In addition, immunodetection demonstrated that cytochrome c and activated caspase-9 and caspase-3 were expressed not only in the neurones, the primarily affected cells, but also within the astrocytes, which constituted a dense network delineating the infarct. These results suggested that glial injury may promote the formation of cystic lesions such as those observed clinically in the newborn brain.

Report this publication


Seen <100 times