Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Antimicrobial and antibiofilm activity of designed and synthesized antimicrobial peptide, KABT-AMP.

Authors
Type
Published Article
Journal
Applied Biochemistry and Biotechnology
1559-0291
Publisher
Springer-Verlag
Publication Date
Volume
170
Issue
5
Pages
1184–1193
Identifiers
DOI: 10.1007/s12010-013-0258-3
PMID: 23649308
Source
Medline
License
Unknown

Abstract

Lysine-rich peptide, designated as KABT-AMP, was designed and synthesized to supersede the irrational use of chemical antibiotics as standard therapy. KABT-AMP is a 22-amino acid helical cationic peptide (+10) and amphipathic in nature. The antimicrobial kinetics of the peptide was ascertained in the representative strains of gram-positive, gram-negative, and fungal strains, viz., Staphylococcus aureus MTCC 2940, Escherichia coli MTCC 2939, and Candida albicans MTCC 227, respectively. KABT-AMP was synthesized by solid-phase synthesis and purified using reverse-phase high-performance liquid chromatography which resulted in >95 % purity, and matrix-assisted laser desorption/ionization time of flight revealed the mass of the peptide to be 2.8 kDa. KABT-AMP showed significant broad-spectrum antimicrobial activity against the bacterial and fungal strains analyzed in the present study with survivability of 30.8, 30.6, and 31.7 % in E. coli, S. aureus, and C. albicans, respectively, at 6 h. KABT-AMP also demonstrated antibiofilm activity against the tested biofilm forming clinical isolate, Candida tropicalis. The putative membranolytic activity of the peptide was substantiated by electron microscopic analysis. Results reveal that KABT-AMP will exhibit noteworthy antimicrobial activity against multidrug-resistant bacteria and fungus at micromolar concentrations with minimal cytotoxicity and thus could be conceived for biomedical application.

Statistics

Seen <100 times