Affordable Access

Access to the full text

Antiferromagnetic order and superlattice structure in nonsuperconducting and superconducting RbyFe(1.6+x)Se2

Authors
  • Wang, Meng
  • Wang, Miaoyin
  • Li, G. N.
  • Huang, Q.
  • Li, C. H.
  • Tan, G. T.
  • Zhang, C. L.
  • Cao, Huibo
  • Tian, Wei
  • Zhao, Yang
  • Chen, Y. C.
  • Lu, X. Y.
  • Sheng, Bin
  • Luo, H. Q.
  • Li, S. L.
  • Fang, M. H.
  • Zarestky, J. L.
  • Ratcliff, W.
  • Lumsden, M. D.
  • Lynn, J. W.
  • And 1 more
Type
Published Article
Publication Date
Aug 14, 2011
Submission Date
Aug 14, 2011
Identifiers
DOI: 10.1103/PhysRevB.84.094504
Source
arXiv
License
Yellow
External links

Abstract

Neutron diffraction has been used to study the lattice and magnetic structures of the insulating and superconducting Rb$_y$Fe$_{1.6+x}$Se$_2$. For the insulating Rb$_{y}$Fe$_{1.6+x}$Se$_2$, neutron polarization analysis and single crystal neutron diffraction unambiguously confirm the earlier proposed $\sqrt{5}\times\sqrt{5}$ block antiferromagnetic structure. For superconducting samples ($T_c=30$ K), we find that in addition to the tetragonal $\sqrt{5}\times\sqrt{5}$ superlattice structure transition at 513 K, the material develops a separate $\sqrt{2}\times \sqrt{2}$ superlattice structure at a lower temperature of 480 K. These results suggest that superconducting Rb$_{y}$Fe$_{1.6+x}$Se$_2$ is phase separated with coexisting $\sqrt{2}\times \sqrt{2}$ and $\sqrt{5}\times\sqrt{5}$ superlattice structures.

Report this publication

Statistics

Seen <100 times