Affordable Access

Antibody from mice immunized with DNA encoding the carboxyl-disintegrin and cysteine-rich domain (JD9) of the haemorrhagic metalloprotease, Jararhagin, inhibits the main lethal component of viper venom.

Authors
Type
Published Article
Journal
Clinical and experimental immunology
Publication Date
Volume
121
Issue
2
Pages
358–363
Identifiers
PMID: 10931154
Source
Medline

Abstract

Envenoming by the Brazilian pit viper, Bothrops jararaca, induces extensive local and systemic haemorrhage in humans. The severe and occasionally lethal outcome of envenoming is prevented only by administration of antivenom which is conventionally prepared by hyperimmunization of large animals with an individual venom or a range of venoms. Since snake venoms typically consist of numerous molecules, only some of which are toxic, antivenoms are antigenically crude preparations whose therapeutic value would theoretically be enhanced by restricting antibody specificity to toxic venom molecules. We report here that high-titre IgG antibody from mice immunized by the GeneGun with DNA encoding the carboxy-terminal JD9 domain of Jararhagin, a haemorrhage-inducing metalloprotease in B. jararaca venom, extensively neutralized the main lethal component of B. jararaca venom. This is to our knowledge the first study to apply DNA-based methods to preparation of antivenom; it represents a novel approach with greater immunological specificity and fewer hazards than conventional systems of antivenom production.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments