# On the Anti-Wishart distribution

- Authors
- Type
- Preprint
- Publication Date
- Submission Date
- Identifiers
- DOI: 10.1016/S0378-4371(02)00739-2
- arXiv ID: cond-mat/0112497
- Source
- arXiv
- External links

## Abstract

We provide the probability distribution function of matrix elements each of which is the inner product of two vectors. The vectors we are considering here are independently distributed but not necessarily Gaussian variables. When the number of components M of each vector is greater than the number of vectors N, one has a $N\times N$ symmetric matrix. When $M\ge N$ and the components of each vector are independent Gaussian variables, the distribution function of the $N(N+1)/2$ matrix elements was obtained by Wishart in 1928. When N > M, what we called the ``Anti-Wishart'' case, the matrix elements are no longer completely independent because the true degrees of freedom becomes smaller than the number of matrix elements. Due to this singular nature, analytical derivation of the probability distribution function is much more involved than the corresponding Wishart case. For a class of general random vectors, we obtain the analytical distribution function in a closed form, which is a product of various factors and delta function constraints, composed of various determinants. The distribution function of the matrix element for the $M\ge N$ case with the same class of random vectors is also obtained as a by-product. Our result is closely related to and should be valuable for the study of random magnet problem and information redundancy problem. See more