Affordable Access

Anti-apoptotic action of API2-MALT1 fusion protein involved in t(11;18)(q21;q21) MALT lymphoma.

  • Hosokawa, Y
Published Article
Apoptosis : an international journal on programmed cell death
Publication Date
Jan 01, 2005
PMID: 15711920


At least three distinct chromosomal translocations, t(11;18)(q21;q21), t(1;14)(p22;q32) and t(14;18)(q32;q21) involving the API2 (also known as c-IAP2)-MALT1 fusion protein, BCL10, and MALT1, respectively, have been implicated in the molecular pathogenesis of mucosa associated lymphoid tissue (MALT) lymphoma. Our findings showed that several variants of the API2-MALT1 fusion protein can occur in patients with t(11;18)(q21;q21), and that API2-MALT1 can potently enfance activation of nuclear factor (NF)-kappaB signaling, which may be relevant to the pathogenesis of MALT lymphomas. We also found that MALT1 is rapidly degraded via the ubiquitin-proteasome pathway, as is the case with API2, but upon the synthesis of fusion, API2-MALT1 becomes stable against this pathway. This stability of API2-MALT1 may thus result in inappropriate nuclear factor (NF)-kappaB activation, thereby contributing to the pathogenesis of MALT lymphoma. Recent biochemical and genetic studies have clearly shown that BCL10 and MALT1 form a physical and functional complex and are both required for NF-kappaB activation by antigen receptor stimulation in T and B lymphocytes. It has also been shown that CARMA1, a newly discovered member of the membrane-associated guanylate kinase (MAGUK) families, is critical for antigen receptor-stimulated NF-kappaB activation. It can be assumed that API2-MALT1 can bypass this normal BCL10/MALT1 cellular signaling pathway linked to NF-kappaB activation, thereby inducing antigen receptor-independent proliferation of lymphocytes. Furthermore, BCL10/MALT1- and API2-MALT1-induced NF-kappaB activation may contribute to anti-apoptotic action probably through NF-kappaB-mediated upregulation of apoptotic inhibitor genes. We recently provided direct evidence that API2-MALT1 indeed exerts anti-apoptotic action, in part, through its direct interaction with apoptotic regulators including Smac. Taken together, these findings prompt us to hypothesize that the anti-apoptotic action of API2-MALT1 may be mediated partly by the direct interaction with apoptotic regulators as well as partly by upregulation of apoptotic inhibitor genes. Further studies can be expected to stimulate research into the development of therapeutic drugs that specifically inhibit the antigen receptor signaling-stimulated NF-kappaB activation pathway: such molecule targeting drugs should be useful for interfering with inappropriate proliferation of lymphocytes associated with inflammatory and neoplastic disorders.

Report this publication


Seen <100 times