Affordable Access

The angiogenesis inhibitor beta-cyclodextrin tetradecasulfate inhibits ecto-protein kinase activity.

Authors
  • Skubitz, K M1
  • Ehresmann, D D
  • 1 Department of Medicine, University of Minnesota Medical School, Minneapolis.
Type
Published Article
Journal
Cellular and molecular biology
Publication Date
September 1992
Volume
38
Issue
6
Pages
543–560
Identifiers
PMID: 1284648
Source
Medline
License
Unknown

Abstract

The growth of new blood vessels plays an important role in the pathogenesis of several diseases including cancer, diabetes, and arthritis. Beta-cyclodextrin tetradecasulfate, when administered with an appropriate steroid inhibits angiogenesis, and can stimulate angiogenesis when given alone. The regulation of angiogenesis is not well understood, and the mechanism of action of beta-cyclodextrin tetradecasulfate is similarly not well defined. Ecto-protein kinase activity that utilizes extracellular ATP has recently been reported on several types of cells. Human neutrophils appear to possess two distinct ecto-protein kinase activities; one that phosphorylates exogenous substrates including vitronectin and basic fibroblast growth factor, and one that phosphorylates endogenous cell-surface proteins. This report shows that beta-cyclodextrin tetradecasulfate inhibits the phosphorylation of the exogenous substrates casein, vitronectin (the major ecto-protein kinase substrate in serum), and basic fibroblast growth factor by human neutrophil ecto-protein kinase activity. In contrast, beta-cyclodextrin tetradecasulfate had no effect on the phosphorylation of endogenous cell-surface proteins by the neutrophil ecto-protein kinase activity. Ecto-protein kinase activity that was inhibited by beta-cyclodextrin tetradecasulfate was also detected on porcine aortic and human umbilical vein endothelial cells. The effects of beta-cyclodextrin tetradecasulfate on ecto-protein kinase activities may play a role in its effects on angiogenesis.

Report this publication

Statistics

Seen <100 times