Affordable Access

Anforderungen für Zeitreihendatenbanken im industriellen IoT

Authors
  • Petrik, Dimitri
  • Mormul, Mathias
  • Reimann, Peter
  • Gröger, Christoph
Publication Date
May 01, 2021
Source
Universität Stuttgart, Fakultät 5, Germany, Computer Science Archive
Keywords
Language
German
License
Unknown
External links

Abstract

Das industrielle Internet der Dinge (IIoT) integriert Informations- und Kommunikationstechnologien in industrielle Prozesse und erweitert sie durch Echtzeit-Datenanalyse. Hierbei sind sensorbasierte Zeitreihen ein wesentlicher Typ von Daten, die in der industriellen Fertigung generiert werden. Sensorbasierte Zeitreihendaten werden in regelmäßigen Abständen generiert und enthalten zusätzlich zum Sensorwert einen Zeitstempel. Spezielle Zeitreihen-Datenbanken (eng.: Time Series Databases (TSDB)) sind dafür ausgelegt, Zeitreihendaten effizient zu speichern. Wenn TSDBs maschinennah, d. h. in der industriellen Edge, eingesetzt werden, sind Maschinendaten zur Überwachung zeitkritischer Prozesse aufgrund der niedrigen Latenz schnell verfügbar, was die erforderliche Zeit für die Datenverarbeitung reduziert. Andererseits können TSDBs auch in den Data Lakes als skalierbaren Datenplattformen zur Speicherung und Analyse von Rohdaten zum Einsatz kommen, um die langfristige Vorhaltung von Zeitreihendaten zu ermöglichen. Bisherige Untersuchungen zu TSDBs sind bei der Auswahl für den Einsatz in der industriellen Edge und im Data Lake nicht vorhanden. Die meisten verfügbaren Benchmarks von TSDBs sind performanceorientiert und berücksichtigen nicht die Randbedingungen einer industriellen Edge oder eines Data Lake. Wir adressieren diese Lücke und identifizieren funktionale Kriterien für den Einsatz von TSDBs in diesen beiden Umgebungen und bilden somit einen qualitativen Kriterienkatalog. Des Weiteren zeigen wir am Beispiel von InfluxDB, wie dieser Katalog verwendet werden kann, mit dem Ziel die systematische Auswahl einer passenden TSDB für den Einsatz in der Edge und im Data Lake zu unterstützen.

Report this publication

Statistics

Seen <100 times