Affordable Access

deepdyve-link
Publisher Website

Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation.

Authors
  • Callaghan, Brid
  • Haythornthwaite, Alison
  • Berecki, Géza
  • Clark, Richard J
  • Craik, David J
  • Adams, David J
Type
Published Article
Journal
Journal of Neuroscience
Publisher
Society for Neuroscience
Publication Date
Oct 22, 2008
Volume
28
Issue
43
Pages
10943–10951
Identifiers
DOI: 10.1523/JNEUROSCI.3594-08.2008
PMID: 18945902
Source
Medline
License
Unknown

Abstract

alpha-Conotoxins Vc1.1 and Rg1A are peptides from the venom of marine Conus snails that are currently in development as a treatment for neuropathic pain. Here we report that the alpha9alpha10 nicotinic acetylcholine receptor-selective conotoxins Vc1.1 and Rg1A potently and selectively inhibit high-voltage-activated (HVA) calcium channel currents in dissociated DRG neurons in a concentration-dependent manner. The post-translationally modified peptides vc1a and [P6O]Vc1.1 were inactive, as were all other alpha-conotoxins tested. Vc1.1 inhibited the omega-conotoxin-sensitive HVA currents in DRG neurons but not those recorded from Xenopus oocytes expressing Ca(V)2.2, Ca(V)2.1, Ca(V)2.3, or Ca(V)1.2 channels. Inhibition of HVA currents by Vc1.1 was not reversed by depolarizing prepulses but was abolished by pertussis toxin (PTX), intracellular GDPbetaS, or a selective inhibitor of pp60c-src tyrosine kinase. These data indicate that Vc1.1 does not interact with N-type calcium channels directly but inhibits them via a voltage-independent mechanism involving a PTX-sensitive, G-protein-coupled receptor. Preincubation with a variety of selective receptor antagonists demonstrated that only the GABA(B) receptor antagonists, [S-(R*,R*)][-3-[[1-(3,4-dichlorophenyl)ethyl]amino]-2-hydroxy propyl]([3,4]-cyclohexylmethyl) phosphinic acid hydrochloride (2S)-3[[(1S)-1-(3,4-dichlorophenyl)-ethyl]amino-2-hydroxypropyl](phenylmethyl) phosphinic acid and phaclofen, blocked the effect of Vc1.1 and Rg1A on Ca2+ channel currents. Together, the results identify Ca(V)2.2 as a target of Vc1.1 and Rg1A, potentially mediating their analgesic actions. We propose a novel mechanism by which alpha-conotoxins Vc1.1 and Rg1A modulate native N-type (Ca(V)2.2) Ca2+ channel currents, namely acting as agonists via G-protein-coupled GABA(B) receptors.

Report this publication

Statistics

Seen <100 times