Affordable Access

An electrochemical approach of the redox behavior of water insoluble ubiquinones or plastoquinones incorporated in supported phospholipid layers.

  • D Marchal
  • W Boireau
  • J M Laval
  • J Moiroux
  • C Bourdillon
Publication Date
Jun 01, 1997
  • Chemistry
  • Design
  • Physics


Physiological mole fractions of long isoprenic chain ubiquinone (UQ[10]) and plastoquinone (PQ9) were incorporated inside a supported bilayer by vesicle fusion. The template of the bilayer was an especially designed microporous electrode that allows the direct electrochemistry of water insoluble molecules in a water environment. The artificial structure, made by self-assembly procedures, consisted of a bilayer laterally in contact with a built-in gold electrode at which direct electron transfers between the redox heads of the quinones molecules and the electrode can proceed. The mass balances of quinone and lipid in the structure were determined by radiolabeling and spectrophotometry. A dimyristoyl phosphatdylcholine stable surface concentration of 250 +/- 50 pmol x cm(-2), unaffected by the presence of the quinone, was measured in the fluid monolayer. The mole fraction of quinone was between 1 and 3 mol%, remaining unchanged when going from the vesicles to the supported layers. The lipid molecules and the quinone pool were both laterally mobile, and cyclic voltammetry was used to investigate the redox properties of UQ10 and PQ9 over a wide pH range. Below pH 12, the two electrons-two protons electrochemical process at the gold electrode appeared under kinetic control. Thus all thermodynamic deductions must be anchored in the observed reversibility of the quinone/hydroquinol anion transformation at pH > 13. Within the experimental uncertainty, the standard potentials and the pK(a)'s of the pertinent redox forms of UQ10 and PQ9 were found to be essentially identical. This differs slightly from the literature in which the constants were deduced from the studies of model quinones in mixed solvents or of isoprenic quinones without a lipidic environment.

Report this publication


Seen <100 times