Affordable Access

Amyloid beta protein (Abeta) starts to deposit as plasma membrane-bound form in diffuse plaques of brains from hereditary cerebral hemorrhage with amyloidosis-Dutch type, Alzheimer disease and nondemented aged subjects.

Authors
  • Yamaguchi, H
  • Maat-Schieman, M L
  • van Duinen, S G
  • Prins, F A
  • Neeskens, P
  • Natté, R
  • Roos, R A
Type
Published Article
Journal
Journal of neuropathology and experimental neurology
Publication Date
Aug 01, 2000
Volume
59
Issue
8
Pages
723–732
Identifiers
PMID: 10952062
Source
Medline
License
Unknown

Abstract

To clarify where and how beta-amyloid begins to deposit in senile plaques, we examined the ultrastructural localization of amyloid beta protein (Abeta) in diffuse plaques of brains with hereditary cerebral hemorrhage with amyloidosis-Dutch type. Alzheimer disease (AD), and from nondemented aged subjects. Serial ultrathin sections of osmium-plastic blocks were immunogold-labeled for Abetax-42 (Abeta42), and sections on grids were observed under the electron microscope (EM) after observing the exact localization of the diffuse plaques in sections on glass slides by the reflection contrast microscope. Abeta42 deposition, which was decollated with gold particles, appeared in 3 forms in all subjects under the EM: 1) Scattered small bundles of amyloid fibrils between cell processes, frequently seen in the densely stained area of diffuse plaques. 2) Scattered small foci of nonfibrillar materials between cell processes as a relatively minor form. 3) Abeta42 on a part of the cell surface plasma membrane of normal appearing cell processes, a major form in weakly immunostained areas. The last form was not associated with degenerative neurites or reactive glia. Abeta42 deposition on the cell surface plasma membrane appears to be an initial event in diffuse plaques, and then it develops into amorphous/fibrillar amyloid between cell processes.

Report this publication

Statistics

Seen <100 times