Affordable Access

deepdyve-link
Publisher Website

Amino and carboxy-terminal extensions of yeast mitochondrial DNA polymerase assemble both the polymerization and exonuclease active sites.

Authors
  • Trasviña-Arenas, Carlos H1
  • Hoyos-Gonzalez, Nallely1
  • Castro-Lara, Atzimba Y1
  • Rodriguez-Hernandez, Annia1
  • Sanchez-Sandoval, María E1
  • Jimenez-Sandoval, Pedro1
  • Ayala-García, Víctor M1
  • Díaz-Quezada, Corina1
  • Lodi, Tiziana2
  • Baruffini, Enrico2
  • Brieba, Luis G3
  • 1 Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, Mexico. , (Mexico)
  • 2 Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy. , (Italy)
  • 3 Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, Mexico. Electronic address: [email protected] , (Mexico)
Type
Published Article
Journal
Mitochondrion
Publication Date
Aug 21, 2019
Volume
49
Pages
166–177
Identifiers
DOI: 10.1016/j.mito.2019.08.005
PMID: 31445096
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Human and yeast mitochondrial DNA polymerases (DNAPs), POLG and Mip1, are related by evolution to bacteriophage DNAPs. However, mitochondrial DNAPs contain unique amino and carboxyl-terminal extensions that physically interact. Here we describe that N-terminal deletions in Mip1 polymerases abolish polymerization and decrease exonucleolytic degradation, whereas moderate C-terminal deletions reduce polymerization. Similarly, to the N-terminal deletions, an extended C-terminal deletion of 298 amino acids is deficient in nucleotide addition and exonucleolytic degradation of double and single-stranded DNA. The latter observation suggests that the physical interaction between the amino and carboxyl-terminal regions of Mip1 may be related to the spread of pathogenic POLG mutant along its primary sequence. Copyright © 2019 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

Report this publication

Statistics

Seen <100 times