Affordable Access

Alpha 2-adrenoceptors determine the response to nitric oxide inhibition in the rat glomerulus and proximal tubule.

Authors
  • Thomson, S C
  • Vallon, V
Type
Published Article
Journal
Journal of the American Society of Nephrology : JASN
Publication Date
Nov 01, 1995
Volume
6
Issue
5
Pages
1482–1490
Identifiers
PMID: 8589327
Source
Medline
License
Unknown

Abstract

Arginine-derived nitric oxide exerts control over the processes of glomerular filtration and tubular reabsorption. The tonic influence of nitric oxide over both of these is eliminated by renal denervation. The hypothesis that the renal nerves function, in this regard, via the activation of alpha 2-adrenoceptors was tested by renal micropuncture. The physical determinants of glomerular filtration and proximal tubular reabsorption were assessed in Munich-Wistar rats before and during the administration of the nitric oxide synthase inhibitor NG-monomethyl L-arginine (L-NMMA). In one set of studies, the systemic infusion of the alpha 2-agonist B-HT 933 rendered nephron GFR, nephron plasma flow, and proximal reabsorption sensitive to reduction by L-NMMA after renal denervation. In a second set of studies, the infusion of the alpha 2 receptor antagonist, yohimbine, to rats with renal nerves intact was found to suppress the effects of L-NMMA on nephron plasma flow and proximal reabsorption. The effects of L-NMMA on nephron GFR and nephron plasma flow, afferent and efferent arteriolar resistances, and proximal reabsorption correlated with the level of underlying alpha 2-adrenergic activity. The activation of renal alpha 2-adrenoceptors increases the influence of arginine-derived nitric oxide in the glomerulus and proximal tubule.

Report this publication

Statistics

Seen <100 times