Affordable Access

Alpha 1-adrenergic receptors in the brain: characterization in astrocytic glial cultures and comparison with neuronal cultures.

Authors
Type
Published Article
Journal
Brain Research
0006-8993
Publisher
Elsevier
Publication Date
Volume
527
Issue
2
Pages
318–325
Identifiers
PMID: 1979238
Source
Medline
License
Unknown

Abstract

Binding of [125I]HEAT to membranes prepared from primary cultures of astrocytic glial cells was time-dependent and 70-85% specific. Various adrenergic agonists and antagonists competed for [125I]HEAT binding according to the potencies of prazosin greater than, yohimbine greater than or equal to, clonidine, norepinephrine (NE), and propranolol. Scatchard analysis showed the Bmax of 209 fmol/mg protein and a Kd of 184 pM for [125I]HEAT binding by astrocytic glial membranes. Pretreatment of astrocytes with NE resulted in a dose-dependent downregulation of [125I]HEAT binding sites with a maximal response observed after 8 h at 100 microM NE. Removal of NE from cultures after pretreatment resulted in a time- and protein synthesis-dependent recovery of binding sites to control levels within 120 h. Incubation of astrocytic glial cultures with NE stimulated phosphoinositide (PI) hydrolysis in a time- and dose-dependent manner with a maximal stimulation of 2-fold observed in 60 min by 100 microM NE. Clonidine expressed differential effects on alpha 1-adrenergic receptors of the neuronal and astrocytic glial cultures. Pretreatment with 10 microM clonidine caused a 40% decrease in the Bmax of [125I]HEAT binding without influencing the Kd value in neuronal cultures. This downregulatory effect of clonidine was associated with a reduction in the ability of NE to stimulate PI hydrolysis in clonidine pretreated cells. In contrast to neuronal cultures, clonidine neither downregulated [125I]HEAT binding sites nor stimulated PI hydrolysis in glial cultures.

Statistics

Seen <100 times