Affordable Access

Allelotyping of butadiene-induced lung and mammary adenocarcinomas of B6C3F1 mice: frequent losses of heterozygosity in regions homologous to human tumor-suppressor genes.

Publication Date
  • Research Article


To identify the potential involvement of tumor-suppressor gene inactivation during neoplastic development in B6C3F1 mice, genetic losses were determined from allelotypes of butadiene-induced lung and mammary adenocarcinomas. By using length polymorphisms in restriction fragments and simple sequence repeats, or "microsatellites," markers on each autosome were analyzed for allele losses in tumor DNAs. Losses of heterozygosity on chromosome 11 were observed at several loci surrounding the p53 tumor-suppressor gene (Trp53) in 12 of 17 mammary tumors and 2 of 8 lung tumors. Although most of these alterations appeared to result from nondisjunction, at least two examples of somatic recombination or deletion were also observed. Southern analysis revealed a homozygous deletion of the remaining Trp53 allele of one of these mammary tumors. Losses of heterozygosity were also detected at the Rb-1 tumor-suppressor gene in 7 of 17 mammary tumors and 1 lung tumor. Finally, frequent allele losses were observed on chromosome 4 in lung tumors. Analysis of nine chromosome 4 loci defined an interstitial deletion containing the Ifa gene cluster in one of the lung tumors. A tumor-suppressor gene was previously mapped to this region of chromosome 4 in studies with somatic cell hybrids. In addition, homozygous deletions have been reported in a homologous region of human chromosome 9p for acute lymphocytic leukemias, glioblastomas, melanomas, and lung carcinomas. These findings suggest that the inactivation of tumor-suppressor genes including Trp53, Rb-1, and an unidentified gene on chromosome 4 plays a significant role during carcinogenesis in mice.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times