Affordable Access

Agrégation d'information pour la localisation d'un robot mobile sur une carte imparfaite

Authors
  • Delobel, Laurent
Publication Date
May 04, 2018
Source
HAL-UPMC
Keywords
Language
French
License
Unknown
External links

Abstract

La plupart des grandes villes modernes mondiales souffrent des conséquences de la pollution et des bouchons. Une solution à ce problème serait de réglementer l'accès aux centres-villes pour les voitures personnelles en faveur d'un système de transports publics constitués de navettes autonomes propulsées par une énergie n'engendrant pas de pollution gazeuse. Celles-ci pourraient desservir les usagers à la demande, en étant déroutées en fonction des appels de ceux-ci. Ces véhicules pourraient également être utilisés afin de desservir de grands sites industriels, ou bien des sites sensibles dont l'accès, restreint, doit être contrôlé. Afin de parvenir à réaliser cet objectif, un véhicule devra être capable de se localiser dans sa zone de travail. Une bonne partie des méthodes de localisation reprises par la communauté scientifique se basent sur des méthodes de type "Simultaneous Localization and Mapping" (SLAM). Ces méthodes sont capables de construire dynamiquement une carte de l'environnement ainsi que de localiser un véhicule dans une telle carte. Bien que celles-ci aient démontré leur robustesse, dans la plupart des implémentations, le partage d'une carte commune entre plusieurs robots peut s'avérer problématique. En outre, ces méthodes n'utilisent fréquemment aucune information existant au préalable et construisent la carte de leur environnement à partir de zéro.Nous souhaitons lever ces limitations, et proposons d'utiliser des cartes de type sémantique, qui existent au-préalable, par exemple comme OpenStreetMap, comme carte de base afin de se localiser. Ce type de carte contient la position de panneaux de signalisation, de feux tricolores, de murs de bâtiments etc... De telles cartes viennent presque à-coup-sûr avec des imprécisions de position, des erreurs au niveau des éléments qu'elles contiennent, par exemple des éléments réels peuvent manquer dans les données de la carte, ou bien des éléments stockés dans celles-ci peuvent ne plus exister. Afin de gérer de telles erreurs dans les données de la carte, et de permettre à un véhicule autonome de s'y localiser, nous proposons un nouveau paradigme. Tout d'abord, afin de gérer le problème de sur-convergence classique dans les techniques de fusion de données (filtre de Kalman), ainsi que le problème de mise à l'échelle, nous proposons de gérer l'intégralité de la carte par un filtre à Intersection de Covariance Partitionnée. Nous proposons également d'effacer des éléments inexistant des données de la carte en estimant leur probabilité d'existence, calculée en se basant sur les détections de ceux-ci par les capteurs du véhicule, et supprimant ceux doté d'une probabilité trop faible. Enfin, nous proposons de scanner périodiquement la totalité des données capteur pour y chercher de nouveaux amers potentiels que la carte n'intègre pas encore dans ses données, et de les y ajouter. Des expérimentations montrent la faisabilité d'un tel concept de carte dynamique de haut niveau qui serait mise à jour au-vol.

Report this publication

Statistics

Seen <100 times