Affordable Access

Publisher Website

Enalapril inhibits nuclear factor-κB signaling in intestinal epithelial cells and peritoneal macrophages and attenuates experimental colitis in mice

Life Sciences
Publication Date
DOI: 10.1016/j.lfs.2013.11.005
  • Enalapril
  • Nf-Kappa B
  • Renin–Angiotensin System
  • Angiotensin-Converting Enzyme Inhibitors
  • Inflammatory Bowel Disease
  • Biology
  • Chemistry
  • Medicine


Abstract Aims Enalapril, an angiotensin-converting enzyme (ACE) inhibitor, has pleiotropic effects such as anti-inflammatory effects. This study investigated the effect of enalapril on the nuclear factor-kappa B (NF-κB) pathway and on experimental colitis. Main methods The human intestinal epithelial cell (IEC) line COLO 205 and peritoneal macrophages from C57BL/6 wild-type mice and IL-10-deficient (IL-10−/−) mice were prepared and subsequently stimulated with lipopolysaccharide (LPS) alone or LPS plus enalapril. The effect of enalapril on NF-κB signaling was examined by western blotting to detect IκBα phosphorylation/degradation; an electrophoretic mobility shift assay (EMSA) to assess the DNA binding activity of NF-κB; and ELISAs to qualify IL-8, TNF-α, IL-6, and IL-12 production. In in vivo studies, dextran sulfate sodium (DSS)-induced acute colitis in wild-type mice and chronic colitis in IL-10−/− mice were treated with or without enalapril. Colitis was quantified by histologic scoring, and the phosphorylation of IκBα in the colonic mucosa was assessed using immunohistochemistry. Key findings Enalapril significantly inhibited LPS-induced IκBα phosphorylation/degradation, NF-κB binding activity, and pro-inflammatory cytokine production in both IEC and peritoneal macrophages. The administration of enalapril significantly reduced the severity of colitis, as assessed based on histology in both murine colitis models. Furthermore, in colon tissue, the up-regulation of IκBα phosphorylation with colitis induction was attenuated in enalapril-treated mice. Significance Enalapril may block the NF-κB signaling pathway, inhibit the activation of IECs and macrophages, and attenuate experimental murine colitis by down-regulating IκBα phosphorylation. These findings suggest that enalapril is a potential therapeutic agent for inflammatory bowel disease.

There are no comments yet on this publication. Be the first to share your thoughts.