Affordable Access

Publisher Website

Interaction of a high-affinity heparin subfraction with low-density lipoprotein stimulates cholesteryl ester accumulation in mouse macrophages

Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism
Publication Date
DOI: 10.1016/0005-2760(91)90025-d
  • High Affinity Heparin-Ldl Complex
  • Lipoprotein Metabolism
  • Cholesteryl Ester Accumulation
  • Heparin
  • (Mouse Peritoneal Macrophage)
  • Biology


Abstract A high-affinity heparin subfraction accounting for 8% of whole heparin from bovine lung was isolated by low-density lipoprotein (LDL)-affinity chromatography. When compared to whole heparin, the high-affinity subfraction was relatively higher in molecular weight (11 000 vs. 17 000) and contained more iduronyl sulfate as hexuronic acid (76% vs. 86%), N-sulfate ester (0.75 vs. 0.96 mol/mol hexosamine), and O-sulfate ester (1.51 vs. 1.68 mol/mol hexosamine). Although both heparin preparations formed insoluble complexes with LDL quantitatively in the presence of 30 mM Ca 2+, the concentrations of NaCl required for 50% reduction in maximal insoluble complex formation was markedly higher with high-affinity subfraction (0.55 M vs. 0.04 M). When compared to complex of 125I-LDL and whole heparin (H- 125I-LDL), complex of 125I-LDL and high-affinity heparin subfraction (HAH- 125I-LDL) produced marked increase in the degradation of lipoproteins by macrophages (7-fold vs. 1.4-fold over native LDL, after 5 h incubation) as well as cellular cholesteryl ester synthesis (16.7-fold vs. 2.2-fold over native LDL, after 18 h incubation) and content (36-fold vs. 2.7-fold over native LDL, after 48 h incubation). After a 5 h incubation, macrophages accumulated 2,3-fold more cell-associated radioactivity from HAH- 125I-LDL complex than from [ 125I]acetyl-LDL. While unlabeled HAH-LDL complex produced a dose-dependent inhibition of the degradation of labeled complex, native unlabeled LDL did not elicit any effect even at a 20-fold excess concentration. Unlabeled particulate LDL aggregate completed for 33% of degradation of labeled complex; however, cytochalasin D, known inhibitor of phagocytosis, did not effectively inhibit the degradation of labeled complex. Unlabeled acetyl-LDL produced a partial (33%) inhibition of the degradation of labeled complex. These results indicate that (1) the interaction of high-affinity heparin subfraction with LDL leads to scavenger receptor mediated endocytosis of the lipoprotein, and stimulation of cholesteryl ester synthesis and accumulation in the macrophages; and (2) with respect to macrophage recognition and uptake, HAH-LDL complex was similar but not identical to acetyl-LDL. These observations may have implications for atherogenesis, because both mast cells and endothelial cells can synthesize heparin in the arterial wall.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times