Affordable Access

Publisher Website

Enhanced antiproliferative effects of combination hexokinase II shRNA and NIS gene therapy on vascular smooth muscle cells

Elsevier Inc.
DOI: 10.1016/j.nucmedbio.2011.07.006
  • Sodium Iodide Symporter
  • 131I
  • Hexokinase Ii
  • Shrna
  • Combination Therapy
  • Design
  • Medicine


Abstract Introduction This study was designed to determine the antiproliferative effects of combination gene therapy using sodium iodide symporter (NIS)-based radioiodine and lentivirus-mediated short hairpin RNA (shRNA) against hexokinase II (HKII) on vascular smooth muscle cells (VSMCs). Methods A7r5 rat VSMCs were stably transfected with a dual-expression vector of NIS and Fluc (A7r5-NL cells). Functional assessment was performed by radioiodine uptake assay, luciferase assay and confocal microscopy. After exposure to lentivirus-HKII-shRNA, the 18F-FDG uptake test and HK activity assay were performed. The effects of combination therapy with 131I and lentivirus-HKII-shRNA on VSMCs were assessed with an in vitro clonogenic assay. In vivo bioluminescence and nuclear imaging were undertaken using a xenografted mouse model. Results In vitro functional assessment confirmed expression of NIS and Fluc genes in A7r5-NL, but not in parent A7r5 cells. Transfection of lentivirus-HKII-shRNA resulted in a significant decrease in messenger RNA expression of the HKII gene, 18F-FDG uptake and HK activity. The cell survival rate of A7r5-NL decreased to 61.9% and 90.5% by single therapy with 7.4 MBq of 131I or lentivirus-HKII-shRNA, respectively, and further decreased to 42.9% by combined therapy (P<.05). In vivo bioluminescent and gamma camera images clearly demonstrated optical signals and 99mTc pertechnetate uptake at the site of A7r5-NL cell inoculation in nude mice. Conclusion The enhanced antiproliferative effect on VSMCs was achieved by a combination of NIS-based radioiodine and lentivirus-mediated HKII shRNA gene therapy. Successful demonstration of in vivo dual reporter gene imaging assures the potential for further application in an animal model.

There are no comments yet on this publication. Be the first to share your thoughts.